Home
Class 12
MATHS
[14.],[" Let "z=(-1+sqrt(3)i)/(2)," wher...

[14.],[" Let "z=(-1+sqrt(3)i)/(2)," where "i=sqrt(-1)," and "r,s in{1,2,3}." Let "P=[[(-z)^(r),z^(2s)],[z^(2s),z^(r)]]" and "I" be the "],[" identity matrix of order "2." Then the total number of ordered pairs "(r,s)" for which "P^(2)=-I" is "],[hline]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z = (-1 + sqrt(3i))/(2) , where i= sqrt(-1) , and r,s in {1,2,3} . Let P =:[((-z)^(r) ,z^(2s)),(z^(2s), z^(r))] and I be the identity matrix of order 2 .Then the total number of ordered pairs (r,s) for which p^(2) = - I is ______

Let z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let P= [((-z)^r, z^(2s)),(z^(2s), z^r)] and I be the idenfity matrix or order 2. Then the total number of ordered pairs (r,s) for which P^2=-I is

let z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let P= [((-z)^r, z^(2s)),(z^(2s), z^r)] and I be the idenfity matrix or order 2. Then the total number of ordered pairs (r,s) or which P^2=-I is

let z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let P= [((-z)^r, z^(2s)),(z^(2s), z^r)] and I be the idenfity matrix or order 2. Then the total number of ordered pairs (r,s) or which P^2=-I is

let z= (-1+sqrt(3i))/2, where i=sqrt(-1) and r,s epsilon P1,2,3}. Let P= [((-z)^r, z^(2s)),(z^(2s), z^r)] and I be the idenfity matrix or order 2. Then the total number of ordered pairs (r,s) or which P^2=-I is

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If z=(sqrt(3)-i)/2 , where i=sqrt(-1) , then (i^(101)+z^(101))^(103) equals to

If z = (sqrt(3)+i)/2 (where i = sqrt(-1) ) then (z^101 + i^103)^105 is equal to