Home
Class 14
MATHS
[111],[a*b*c],[a^(3)b^(3)*c^(1)]...

[111],[a*b*c],[a^(3)b^(3)*c^(1)]

Promotional Banner

Similar Questions

Explore conceptually related problems

find the rank of [[1,1,1],[a,b,c],[a^3,b^3,c^3]]

By using properties of determinants, show that : |[1,1,1],[a,b,c],[a^3,b^3,c^3]| = (a-b)(b-c)(c-a)(a+b+c)

Prove the following: [[1,1,1],[a,b,c],[a^3,b^3,c^3]] =(b-c)(c-a)(a-b)(a+b+c)

Using the property of determinants and without expanding prove that abs([1,1,1],[a,b,c],[a^3,b^3,c^3])=(a-b)(b-c)(c-a)(a+b+c)

Using properties of determinants prove the following. abs[[1,1,1],[a,b,c],[a^3,b^3,c^3]]=(a-b)(b-c)(c-a)(a+b+c)

If a,b,are distinct,show that [[1,1,1a,b,ca^(3),b^(3),c^(3)]]=(b-c)*(c-a)*(a-b)(a+b+c)

|(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|=

Prove that |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|=(a-b)(b-c)(c-a)(a+b+c)

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))| = (a - b) (b - c) (c - a) (a + b + c) , where a,b,c are all different, then the determinant |(1,1,1),((x-a)^(2),(x-b)^(2),(x-c)^(2)),((x-b)(x-c),(x-c)(x-a),(x-a)(x-b))| vanishes when a)a + b + c = 0 b) x = (1)/(3) (a + b + c) c) x = (1)/(2) (a + b + c) d) x = a + b + c