Home
Class 14
MATHS
" (h) "4sin27^(@)=sqrt(5+sqrt(5))-sqrt(3...

" (h) "4sin27^(@)=sqrt(5+sqrt(5))-sqrt(3-sqrt(5))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (1)cos36^(@)cos72^(@)cos108^(@)cos144^(@)=(1)/(16)(2) Show that 4sin27^(@)=sqrt(5+sqrt(5))-sqrt(3-sqrt(5))

Prove that, 4sin27^(@)=sqrt(5+sqrt(5))+sqrt(3-sqrt(5))

which of the following is /are correct? (A) cos72^(0)=(sqrt(5)-1)/(4) (B) sin54^(0)=(sqrt(5)-1)/(4) (C) cot7(1)/(2)^(0)=sqrt(2)+sqrt(3)+sqrt(4)+sqrt(6) (D) 4sin27^(0)=sqrt(5+sqrt(5))+sqrt(3-sqrt(5))

Prove that 4sin27^@=sqrt(5+sqrt5)-sqrt(3-sqrt5)

4 sin 27^(0)= 1) sqrt(5+sqrt(5))+sqrt(3-sqrt(5)) 2) sqrt(5-sqrt(5))+sqrt(3+sqrt(5) 3) sqrt(5+sqrt(5))-sqrt(3-sqrt(5)) 4) sqrt(5+sqrt(5))+sqrt(3+sqrt(5)

4sin27^(@)=sqrt(alpha+sqrt(5))-sqrt(beta-sqrt(5));(alpha,beta in I^(+)) then alpha+beta=

Prove that ; 4 sin 27^@=(5+sqrt(5))-sqrt((3-sqrt(5))) we have

Prove that 4 sin 27^@ = sqrt(5+sqrt5)+sqrt(3-sqrt5) .

(sqrt(3)-sqrt(5))(sqrt(5)+sqrt(3))

(2sqrt3 + sqrt5)(2sqrt3 - sqrt5)