Home
Class 12
MATHS
If x^(y)=y^(x) then show that dy/dx=(y(x...

If `x^(y)=y^(x)` then show that `dy/dx=(y(xlogy-y))/(x(ylogx-x))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)=e^(x-y), show that (dy)/(dx)=(y(x-y))/(x^(2))

If (x^y)(y^x)=1 , prove that (dy)/(dx)=-(y(y+xlogy))/(x(ylogx+x))

If y=e^(x-y) then show that (dy)/(dx) = y/(1+y)

If x^y. y^x=1 , prove that (dy)/(dx)=-(y(y+xlogy))/(x(ylogx+x))

If x^(y) y^(x)=5 , then show that (dy)/(dx)= -(log y + (y)/(x))/(log x + (x)/(y))

If y = x/(x+4) then show that x (dy)/(dx) = y(1-y)

If x^4y^5=(x+y)^9 . Show that (dy/dx)=(y/x)

If Y = kx, then show that (dy)/(dx) = (y)/(x)