Home
Class 10
MATHS
[" If "x(1),x(2)" and "x(3)" are the pos...

[" If "x_(1),x_(2)" and "x_(3)" are the positive roots the equation "x^(3)-6x^(2)+3p times-2p=0,p in R-{0}" then the value of "],[sin^(-1)((1)/(x_(1))+(1)/(x_(2)))+cos^(-1)((1)/(x_(2))+(1)/(x_(3)))-tan^(-1)((1)/(x_(3))+(1)/(x_(1)))" is equal to "],[[" (A) "(pi)/(4)," (B) "(pi)/(2)," (C) "(3 pi)/(4)," (D) "pi]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x_(1) , x_(2) and x_(3) are the positive roots of the equation x^(3)-6x^(2)+3px-2p=0 , p inR , then the value of sin^(-1)((1)/(x_(1))+(1)/(x_(2)))+cos^(-1)((1)/(x_(2))+(1)/(x_(3)))-tan^(-1)((1)/(x_(3))+(1)/(x_(1))) is equal to

If x_(1) , x_(2) and x_(3) are the positive roots of the equation x^(3)-6x^(2)+3px-2p=0 , p inR , then the value of sin^(-1)((1)/(x_(1))+(1)/(x_(2)))+cos^(-1)((1)/(x_(2))+(1)/(x_(3)))-tan^(-1)((1)/(x_(3))+(1)/(x_(1))) is equal to

If x_(1) , x_(2) and x_(3) are the positive roots of the equation x^(3)-6x^(2)+3px-2p=0 , pinR , then the value of sin^(-1)((1)/(x_(1))+(1)/(x_(2)))+cos^(-1)((1)/(x_(2))+(1)/(x_(3)))-tan^(-1)((1)/(x_(3))+(1)/(x_(1))) is equal to

If x_(1) , x_(2) and x_(3) are the positive roots of the equation x^(3)-6x^(2)+3px-2p=0 , pinR , then the value of sin^(-1)((1)/(x_(1))+(1)/(x_(2)))+cos^(-1)((1)/(x_(2))+(1)/(x_(3)))-tan^(-1)((1)/(x_(3))+(1)/(x_(1))) is equal to

If x_1, x_2, and x_3 , are the positive roots of the equation x^3 - 6x^2 +3px -2p=0 , p in R then the value of sin^-1(1/x_1+1/x_2)+cos^-1(1/x_2+1/x_3)-tan^-1(1/x_3+1/x_1)

Solve 3sin^(-1)((2x)/(1+x^(2)))-4cos^(-1)((1-x^(2))/(1+x^(2)))+2tan^(-1)((2x)/(1-x^(2)))=(pi)/(3)

If x_(1),x_(2),x_(3) are the roots of the equation x^(3)-3px^(2)+3qx-1=0 then find the centroid of the co-ordinates of whose vertices are (x_(1),(1)/(x_(1)))(x_(2),(1)/(x_(2))) and (x_(3),(1)/(x_(3)))

IF 3 sin^(-1)((2x)/(1+x^(2)))-4cos^(-1)((1-x^(2))/(1+x^(2)))+ 2tan^(-1)((2x)/(1-x^(2)))=(pi)/3 then x=

Solve 3Sin^(-1)((2x)/(1+x^(2))) - 4 Cos^(-1)((1-x^(2))/(1+x^(2)))+2Tan^(-1)((2x)/(1-x^(2))) = (pi)/3