Home
Class 12
MATHS
The range of the function f(x)=[sinx+cos...

The range of the function `f(x)=[sinx+cosx]` (where `[x]` denotes the greatest integer function) is

Promotional Banner

Similar Questions

Explore conceptually related problems

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

The range of the function f(x)=[x]-x , where [x] denotes the greatest integer le x is :

The range of function f(x)=[[x]-x]+sin^(2)x , where [.] denotes the greatest integer function, is.

The range of the function f(x)=x-[x] , where [x] denotes the greatest integer le x, is :

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

Find the Range of function f(x) = [|sin x| + |cosx |] , where [.] denotes are greatest integer function , is :

The range of the function f(x)=2+x-[x-3] is, (where [.] denotes greatest integer function):

The range of the function f(x)=2+x-[x-3] is, (where [.] denotes greatest integer function):

f(x)=[abs(sinx)+abs(cosx)] , where [*] denotes the greatest integer function.