Home
Class 12
MATHS
In triangle ABC , prove that sin .(A)/(2...

In triangle ABC , prove that `sin .(A)/(2)+ sin. (B)/(2) -sin. (C)/(2)=-1+4 cos.(pi-A)/(4)cos. (pi-B)/(4)sin. (pi-C)/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B, C are the angles in a triangle then prove that sin .(A)/(2)+ sin . (B)/(2)+ sin .(C)/(2) =1 +4 sin((pi-A)/(4)) sin ((pi-B)/(4)) sin((pi-C)/(4))

In triangle ABC, prove that cos .(A)/(2)+cos.(B)/(2)+cos. (C)/(2) =4 cos .(pi-A)/(4)cos. (pi-B)/(4) cos.(pi-C)/(4)

In Delta ABC , prove that cos. (A)/(2)+cos. (B)/(2) - cos .(C)/(2)=4cos .(pi+A)/(4) cos. (pi+B)/(4) cos. (pi-C)/(4)

If A+B+C=pi, prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))=1+4sin((pi-B)/(4))sin((pi-B)/(4))*sin((pi-C)/(4))

If A+B+C=pi , prove that : sin ((B+C)/(2)) + sin ((C+A)/(2)) + sin( (A+B)/(2) )= 4cos ((pi-A)/(4)) cos( (pi-B)/(4)) cos((pi-C)/(4)) .

If A+B+C=pi then prove that sin((A)/(2))+sin((B)/(2))+sin((C)/(2))-1=4sin((pi-A)/(4))sin((pi-B)/(4))sin((pi-C)/(4))

In triangle ABC,prove that cos((A)/(2))+cos((B)/(2))+cos((C)/(2))=4(cos(pi-A))/(4)(cos(pi-B))/(4)(cos(pi-C))/(4)

If A+B+C=180^@ then prove that sin( A/2)+sin( B/2)+sin( C/2) = 1+4 sin( (pi-A)/4)sin((pi-B)/4)sin ((pi-C)/4)

In any triangle ABC, prove that : sin frac (A)(2) +sin frac (B)(2)+sin frac (C)(2)=1+4 sin frac (pi-A)(4) sin frac (pi-B)(4) sin frac (pi-C)(4) .

In DeltaABC, prove that: a) sin(A/2)+sin(B/2) +sin(C/2)= 1+4sin((pi-A)/4)sin((pi-B)/4).sin((pi-C)/4)