Home
Class 12
MATHS
If A+B+C=(pi)/(2), then prove that cos 2...

If `A+B+C=(pi)/(2)`, then prove that `cos 2A + cos 2B + cos 2C=1+4 sin A sin B sin C `.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=(3pi)/(2), prove that cos 2A+ cos 2B+ cos 2C=1-4 sin A sin B sin C .

If A + B + C = (pi)/(2) , prove that cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B cos C

If A+B+C=(3pi)/(2) , then show that cos 2A+cos 2B+cos 2C=1-4 sin A sin B sin C .

If A+B+C=(3pi)/(2) , then show that cos 2A+cos 2B+cos 2C=1-4 sin A sin B sin C .

If A+B+C=(3pi)/(2) , then show that cos 2A+cos 2B+cos 2C=1-4 sin A sin B sin C .

If A + B + C =pi , prove that : cos 2A - cos 2B + cos 2C= 1-4 sin A cos B sin C .

If A + B + C =pi , prove that : cos 2A + cos 2B -cos 2C= 1-4sin A sin B cos C .

If A + B + C =pi , prove that : cos 2A - cos 2B- cos 2C= -1+4 cos A sinB sin C .

If A + B + C = pi then prove that cos A + cos B + cos C = 1 + 4 sin(A/2) .sin(B/2).sin(C/2)

If A + B + C =pi/2 , prove that : cos^2 A +cos^2 B+cos^2 C= 2+2 sin A sin B sin C .