Home
Class 14
MATHS
sin^2 33^@+cos^2 57^@=...

`sin^2 33^@+cos^2 57^@=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (cos^2 33^@- cos^2 57^@)/(sin^2 frac (21^@) (2)- sin^2 frac (69^@)(2))=- sqrt2 .

Find the value of (sin^2 33^@ + sin^2 57^@)

Consider the following I. sin^2 1^@+ cos^2 1^@ =1 II. sec^2 33^@ -cot^2 57^@ = cosec^2 37^@ - tan^2 53^@ Which of the above statement is/are correct ?

Prove that: (cos^2 33^@-cos^2 57^@)/(sin^2(21/2)^@-sin^2(69/2)^@)=-sqrt(2)

( cos^(2) 33^(@) - cos^(2) 57^@)/( sin 21^(@) - cos 21^(@))=

The expression (1+sin22^@sin33^@sin35^@)/(cos^2 22^@+cos^2 33^@+cos^2 35^@) simplifies to

The expression (1+sin22^@sin33^@sin35^@)/(cos^2 22^@+cos^2 33^@+cos^2 35^@) simplifies to

(cos^(2)33^(@)-cos^(2)57^(@))/(sin21^(@)-cos21^(@))=

Without using Trigonometric Tables evaluate the following :- (sec^2 54^@-cot^2 36^@)/(cosec^2 57^@-tan^2 33^@) +2sin^2 38^@ sec^2 52^@-sin^2 45^@ .

If x=sec57^(@) , then cot^(2)33^(@)+sin^(2)57^(@)+sin^(2)33^(@)+cosec^(2)57^(@)cos^(2)33^(@)+sec^(2)33^(@)sin^(2)57^(@) is equal to: