Home
Class 11
MATHS
If A + B + C = (pi)/(2), prove that co...

If A + B + C `= (pi)/(2)`, prove that
cos 2A + cos 2B + cos 2C = 1 + 4 sin A sin B cos C

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=(3pi)/(2), prove that cos 2A+ cos 2B+ cos 2C=1-4 sin A sin B sin C .

cos2B + cos2A-cos2C = 1-4sin A sin B cos C

If A+B+C=(pi)/(2) , then prove that cos 2A + cos 2B + cos 2C=1+4 sin A sin B sin C .

If A + B + C =pi , prove that : cos 2A - cos 2B + cos 2C= 1-4 sin A cos B sin C .

If A + B + C =pi , prove that : cos 2A + cos 2B -cos 2C= 1-4sin A sin B cos C .

If A + B + C =pi , prove that : cos 2A + cos 2B + cos 2C = -1-4 cos A cos B cos C .

If A + B + C = (pi)/(2) , prove that sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C

If A + B + C =pi , prove that : cos 2A - cos 2B- cos 2C= -1+4 cos A sinB sin C .

If A + B + C = pi , prove that cos A + cos B + cos C= 1 + 4 sin(A/2) sin(B/2) sin(C/2)

If A + B + C = pi then prove that cos A + cos B + cos C = 1 + 4 sin(A/2) .sin(B/2).sin(C/2)