Home
Class 12
MATHS
" vii) "int(0)^( pi/2)(f(x))/(f(x)+f((pi...

" vii) "int_(0)^( pi/2)(f(x))/(f(x)+f((pi)/(2)-x))dx=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

The value of the integral int_(0)^(pi//2)(f(x))/(f(x)+f(pi/(2)-x))dx is

If f(x)=(sin x)/(x)AA x in(0,pi], prove that (pi)/(2)int_(0)^((pi)/(2))f(x)f((pi)/(2)-x)dx=int_(0)^( pi)f(x)dx

int_(0)^(pi//2)(f(sec x))/(f(sec x)+f(cosec x))dx=

int_(0)^( pi)xf(sin x)dx=(pi)/(2)int_(0)^( pi)f(sin x)dx

What is the value of int_0^pi((f(x))/(f(x)+f(pi/2-x)))dx ?

If f(x)=(sinx)/xAAx in (0,pi], prove that pi/2int_0^(pi/2)f(x)f(pi/2-x)dx=int_0^pif(x)dx

If f(x)=(sinx)/xAAx in (0,pi], prove that pi/2int_0^(pi/2)f(x)f(pi/2-x)dx=int_0^pif(x)dx

If f(x)=(sinx)/xAAx in (0,pi], prove that pi/2int_0^(pi/2)f(x)f(pi/2-x)dx=int_0^pif(x)dx

If f(x)=(sinx)/xAAx in (0,pi], prove that pi/2int_0^(pi/2)f(x)f(pi/2-x)dx=int_0^pif(x)dx