Home
Class 12
MATHS
Let P be a point on the parabola, y^(2)=...

Let P be a point on the parabola, `y^(2)=12x` and N be the foot of the perpendicular drawn from P on the axis of the parabola. A line is now drawn through the mid-point M of PN,parallel to its axis which meets the parabola at Q. If the y-intercept of the line NQ is `(4)/(3),` then

Promotional Banner

Similar Questions

Explore conceptually related problems

A point P on the parabola y^2=12x . A foot of perpendicular from point P is drawn to the axis of parabola is point N. A line passing through mid-point of PN is drawn parallel to the axis interescts the parabola at point Q. The y intercept of the line NQ is 4. Then-

A point P on the parabola y^2=12x . A foot of perpendicular from point P is drawn to the axis of parabola is point N. A line passing through mid-point of PN is drawn parallel to the axis interescts the parabola at point Q. The y intercept of the line NQ is 4. Then-

If P be a point on the parabola y^(2)=3(2x-3) and M is the foot of perpendicular drawn from the point P on the directrix of the parabola, then length of each sires of the parateral triangle SMP(where S is the focus of the parabola),is

If P be a point on the parabola y^2=3(2x-3) and M is the foot of perpendicular drawn from the point P on the directrix of the parabola, then length of each sides of an equilateral triangle SMP(where S is the focus of the parabola), is

If P be a point on the parabola y^2=3(2x-3) and M is the foot of perpendicular drawn from the point P on the directrix of the parabola, then length of each sides of an equilateral triangle SMP(where S is the focus of the parabola), is

A normal drawn at a point P on the parabola y^(2)=4ax meets the curve again at O. The least distance of Q from the axis of the parabola,is

P,Q and R three points on the parabola y^(2)=4ax . If Pq passes through the focus and PR is perpendicular to the axis of the parabola, show that the locus of the mid point of QR is y^(2)=2a(x+a) .

A normal drawn at a point P on the parabola y^2 = 4ax meets the curve again at Q. The least distance of Q from the axis of the parabola, is

A normal drawn at a point P on the parabola y^2 = 4ax meets the curve again at Q. The least distance of Q from the axis of the parabola, is

The tangent at a point P on the parabola y^(2)=8x meets the directrix of the parabola at Q such that distance of Q from the axis of the parabola is 3. Then the coordinates of P cannot be