Home
Class 11
MATHS
If n-1Cr=(k^2-3)^nC(r+1), then (a) (-oo...

If `n-1C_r=(k^2-3)^nC_(r+1),` then (a) `(-oo,-2]` (b) `[2,oo)` (c) `[-sqrt3, sqrt3]` (d) `(sqrt3,2]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If .^(n-1)C_r=(k^2-3)^nC_(r+1), then k belongs to (a) (-oo,-2] (b) [2,oo) (c) [-sqrt3, sqrt3] (d) [sqrt3,2]

If n-1C_(r)=(k^(2)-3)^(n)C_(r+1), then (a) (-oo,-2](2,oo)(c)[-sqrt(3),sqrt(3)](d)(sqrt(3),2]

sinx+cosx=y^2-y+a has no value of x for any value of y if a belongs to (a) (0,""sqrt(3)) (b) (-""sqrt(3),0) (c) (-oo,-""sqrt(3)) (d) (""sqrt(3),oo)

sinx+cosx=y^2-y+a has no value of x for any value of y if a belongs to (a) (0,""sqrt(3)) (b) (-""sqrt(3),0) (c) (-oo,-""sqrt(3)) (d) (""sqrt(3),oo)

sinx+cosx=y^2-y+a has no value of x for any value of y if a belongs to (a) (0,""sqrt(3)) (b) (-""sqrt(3),0) (c) (-oo,-""sqrt(3)) (d) (""sqrt(3),oo)

Three equal circles each of radius r touch one another. The radius of the circle touching all the three given circles internally is (a) (2+sqrt(3))r (b) ((2+sqrt(3)))/(sqrt(3))r (c) ((2-sqrt(3)))/(sqrt(3))r (d) (2-sqrt(3))r

The domain of f(x)=((log)_2(x+3))/(x^2+3x+2) is (a) R-{-1,2} (b) (-2,oo) (c) R-{-1,-2,-3} (d) (-3,oo)-(-1,-2}

The domain of f(x)=((log)_2(x+3))/(x^2+3x+2) is (a) R-{-1,2} (b) (-2,oo) (c) R-{-1,-2,-3} (d) (-3,oo)-{-1,-2}