Home
Class 12
MATHS
The value of (1+I z +z^(5) + z^(8))^(9)...

The value of `(1+I z +z^(5) + z^(8))^(9)` when `z = (sqrt(3) + i)/(2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of (1+Iz+z^(5)+z^(8))^(9) when z=(sqrt(3)+i)/(2) is

Suppose z satisfies the equation z^(2) + z + 1 = 0."Let" omega = (z+(1)/(z))^(2) + (z^(2) + (1)/(z^(2)))^(2) + (z^(3) + (1)/(z^(3)))+...+(z^(9) + (1)/(z^(9)))^(2) then |omega + sqrt(301) i| is equal to ____________

If z_(1)= 4-3i and z_(2) = 3 + 9i " then " z_(1) -z_(2) is

If z_(1)= 4-3i and z_(2) = 3 + 9i " then " z_(1) -z_(2) is

If z = 2 + i, prove that z^(3) + 3z^(2) - 9z + 8 = (1 + 14i) .

The ascending order of the values of z_1=(1+i)^4,z_2=(sqrt3+i)^(12),z_3=(1+isqrt3)^(9) + (1-isqrt3)^9