Home
Class 11
MATHS
If x=a cos^(4)t, y=b sin^(4)t then (dy)/...

If `x=a cos^(4)t, y=b sin^(4)t` then `(dy)/(dx)` at `t = (3 pi)/(4)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a cos^(3)t,y=b sin^(3)t then (dy)/(dx)=

If x= 2 cos^(4) (t+3) ,y=3sin ^(4) (t+3) ,then (dy)/(dx)=

If x=a cos ^(3) t,y =a sin ^(3)t,then " at" t = (pi)/(3) ,(dy)/(dx) =

If x=t^(3) and y=t^(4) then (dy)/(dx) at "t=-1" is

If x=a(cos t+(1)/(2)log tan^(2)t) and y=a sin t then find (dy)/(dx) at t=(pi)/(4)

x=a cos t,y=a sin t then (d^(2)(y))/(dx^(2)) at t=(pi)/(3),(pi)/(6),(pi)/(2),(pi)/(4)

If y=sin t -cos t and x=sin t+cost , then (dy)/(dx) at t=(pi)/(6) is :

If x = 4t ,y =(4)/(t) ,then (dy)/(dx)=

x=t cos t,y=t+sin t. Then (d^(2)x)/(dy^(2)) at t=(pi)/(2) is