Home
Class 12
MATHS
Prove that sin^(-1) x+cos^(-1) x=pi/2, x...

Prove that `sin^(-1) x+cos^(-1) x=pi/2, x in [-1,1]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : sin^(-1)x+cos^(-1)x=(pi)/(2), |x| le 1

prove that sin^(-1)(x)+cos^(-1)(x)=pi/2 , -1<=x<=1

Prove that sin^(-1)x=cos^(-1) sqrt(1-x^2)

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

If |sin^(-1)x|+|cos^(-1)x|=(pi)/(2), then x in

If |sin^(-1)x|+|cos^(-1)x|=(pi)/(2), then x in

Prove that sin^(-1)x+sin^(-1)sqrt(1-x^(2))=(pi)/(2)

Prove that : cos (2 sin^(-1) x) = 1-2x^2

Q.if solution of the equation 2sin^(-1)x cos^(-1)x-2 pi sin^(-1)x-pi cos^(-1)x+pi^(2)=0 are alpha and beta such that then which of the following is lare correct?