Home
Class 10
MATHS
lf G be the centroid of a triangle ABC a...

lf G be the centroid of a triangle ABC and P be any other point in the plane prove that `PA^2+PB^2+PC^2=GA^2+GB^2+GC^2+3GP^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If G be the centroid of a triangle ABC and P be any other point in the plane prove that PA^(2)+PB^(2)+PC^(2)=GA^(2)+GB^(2)+GC^(2)+3GP^(2)

If G be the centroid of the DeltaABC and O be any other point in theplane of the triangle ABC , then prove that: OA^2 +OB^2 +OC^2=GA^2 +GB^2 +GB^2 + GC^2 + 3GO^2

P is a point inside the rectangle ABCD Prove that PA^2+ PC^2= PB^2 +PD^2 : .

If P be any point in the plane of square ABCD, prove that PA^(2)+PC^(2)=PB^(2)+PD^(2)

If P be any point in the plane of square ABCD, prove that PA^(2)+PC^(2)=PB^(2)+PD^(2)

If P be any point in the plane of square ABCD, prove that PA^(2)+PC^(2)=PB^(2)+PD^(2)

If P be any point in the plane of square ABCD, prove that PA^(2)+PC^(2)=PB^(2)+PD^(2)

Let ABCD be a rectangle and P be any point in its plane.Show that AP^(2)+PC^(2)=PB^(2)+PD^(2)

If G be the centroid of the Delta ABC , then prove that AB^2+BC^2+CA^2=3(GA^2+GB^2+GC^2)