Home
Class 12
MATHS
The sum of the series i+2i^2+3i^3+... u...

The sum of the series `i+2i^2+3i^3+...` up to 200 terms equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Fill in the blanks of the following The sum of the series i+i^(2)+i^(3)+i^(4)+.... upto 1000 terms is ....

Write the sum of the series i+i^2+i^3+....... upto 1000 terms.

Write the sum of the series i+i^(2)+i^(3)+ upto 1000 terms.

If i^(2) = -1 , then i^(1) + i^(2) + i^(3) + ….. + up to 1000 terms is equal to

if i^2 =-1, then the sum i+ i^2 + i^3 +......... to 1000 terms is equal to

If i^2=-1, then the sum i+i^2+i^3+... upto 1000 terms is equal to a. 1 b. -1 c. i d. 0

The sequences S=i+2i^(2)+3i^(3)+...... upto 100 terms simplifies to where i=sqrt(-1)

Find the sum ( i + i^(2) + i^(3) + i^(4) +..... up to 400 terms).

The sum of i-2-3i+4... up to 100 terms, where i=sqrt(-1) is 50(1-i) b.25i c.25(1+i) d.100(1-i)

If i^(2) =-1, then the sum of i+i^(2) +i^(3)+… to 1000 terms is equal to