Home
Class 10
MATHS
Prove that ( cot theta - cosec theta)^(2...

Prove that `( cot theta - cosec theta)^(2) = ( 1- cos theta )/( 1+ cos theta )`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (cosec theta -cot theta )^(2) =(1-cos theta )/( 1+cos theta )

Show that (cosec theta -cot theta )^(2) =(1-cos theta )/( 1+cos theta )

Show that (cosec theta -cot theta )^(2) =(1-cos theta )/( 1+cos theta )

Show that (cosec theta -cot theta )^(2) =(1-cos theta )/( 1+cos theta )

Show that (cosec theta -cot theta )^(2) =(1-cos theta )/( 1+cos theta )

Prove that (cosec theta-cot theta)^(2)=(1-cos theta)/(1+cos theta)

Prove that : ("cosec "theta -cot theta)^(2)=(1-cos theta)/(1+cos theta)

Prove that : ("cosec "theta-cot theta)^(2)=(1-cos theta)/(1+cos theta) .

Prove that (cosec theta-cot theta)^(2)=(1-cos theta)/(1+cos theta) OR If sin theta+cos theta = sqrt(2) sin (90-theta) determine cot theta