Home
Class 12
MATHS
If |z1/z2|=1 and arg (z1z2)=0 , then...

If `|z_1/z_2|=1` and `arg (z_1z_2)=0` , then

Promotional Banner

Similar Questions

Explore conceptually related problems

If |(z_(1))/(z_(2))|=1 and arg(z_(1)z_(2))=0, then

If z_(1)-z_(2) are two complex numbers such that |(z_(1))/(z_(2))|=1 and arg (z_(1)z_(2))=0, then

If |z_1|=|z_2| and arg(z_1)+arg(z_2)=pi/2 then (A) z_1z_2 is purely real (B) z_1z_2 is purely imaginary (C) (z_1+z_2)^2 is purely imaginary (D) arg(z_1^(-1))+arg(z_2^(-1))=-pi/2

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find z_(1)+z_(2) .

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then z 1 ​ +z 2 ​ is equal to

If |z_(1)|=|z_(2)| and arg (z_(1)//z_(2))=pi, then find the of z_(1)z_(2).

|z_(1)|=|z_(2)|" and "arg z_(1)+argz_(2)=0 then

If |z_(1)|=|z_(2)| and arg (z_(1))+"arg"(z_(2))=0 , then

If |z_(1)|=|z_(2)| and arg (z_(1))+"arg"(z_(2))=0 , then