Home
Class 12
MATHS
If f (x)=((x-1) (x-2))/((x-3)(x-4)), the...

If `f (x)=((x-1) (x-2))/((x-3)(x-4)),` then number of local extemas for g (x), where `g (x) =f (|x|):`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f (x)=((x-1) (x-2))/((x-3)(x-4)), then number of local extremas for g (x) , where g (x) =f (|x|): (a) 3 (b) 4 (c) 5 (d) none of these

If f(x)=g(x)|(x-1)(x-2)(x-3)(x-4)|+x+3 is derivable for all x in R, whered g(x)=ax^(3)+bx^(2)+cx+d then find (d^(2))/(dx^(2))(f(x^(2))-g(x+1)) at x=0

If f(x)=2x-1, g(x)=x^(2) , then (3f-2g)(x)=

If f(x)=(1)/(x-1) and g(x)=(x-2)/(x+3), then number of points of discontinuity in f(g(x))is(1)1(2)2(3)3(4)4

If f(x)=|x-1| and g(x)=f(f(f(x))) then for x>2,g'(x)=

If: f(x)=5-x^2,g(x)=3x-4 , then: (f@g)(-1)=

If f(x)=(1+x)/([x]),x in[1,3] , then the number of points of discontinuity are (where [.] is G.I.F.)

If f(x)=|x-2| and g(x)=f(f(x)), then for 2

If f(g(x))=4x^(2)-8x and f(x)=x^(2)-4, then g(x)=