Home
Class 12
MATHS
If f(x)=e^(x) and g(x)=log(e)x, then sho...

If `f(x)=e^(x) and g(x)=log_(e)x,` then show that `"fog=gof"` and find `f^(-1) and g^(-1)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=e^(x) and g(x)=log_(e)x, then (gof)'(x) is

If f(x)=e^(x) , and g(x)=log_(e )x , then value of fog will be

If f(x) = e^x and g(x) = logx , Show that fog = gof , given x>0 .

If f(x)=e^(x) and g(x)=log_(e)x(x>0), find fog and gof .Is fog =gof?

If f(x)=1+x,g(x)=2x-2 , show that fog=gof

If f(x)=e^x and g(x) =log_(e)x, then find (f+g)(1) and fg(1).

If f(x)=e^(x),g(x)=log e^(x) then find fog and gof

Let f(x)=x^2+x+1 and g(x)=sinx . Show that fog!=gof .

Let f(x)=x^2+x+1 and g(x)=sinx . Show that fog!=gof .