Home
Class 12
MATHS
[" Q1) Define limit of a function at a p...

[" Q1) Define limit of a function at a point."],[" Show that "lim_(x rarr0)(e^((1)/(x))-1)/(e^((1)/(x))+1)" does not exist."]

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0+)(xe^((1)/(x)))/(1+e^((1)/(x)))

Show that (lim)_(x rarr0)(e^((1)/(x))-1)/(e^((1)/(z))+1)does neg e xi st

lim_(x rarr0)(1+e^(-(1)/(x)))/(1-e^(-(1)/(x))))

lim_(x rarr0)(e^((1)/(x))-1)/(e^((1)/(x))+1) is equal to

lim_(x rarr0)[((1+x)^((1)/(x)))/(e)]^((1)/(x))

lim_(x rarr 0) (e^(1/x)-1)/(e^(1/x)+1) =

lim_(x rarr0^(-))((e^((1)/(x)))/(x))

lim_(x rarr0)(e-(1+x)^((1)/(x)))/(x)

lim_(x rarr0)(1+x)^((1)/(x))=e

lim_(x rarr0)((e^(x)-x-1)/(x))