Home
Class 11
MATHS
[" 47.Let "f(x)=int(x^(2))/((1+x^(2))(1+...

[" 47.Let "f(x)=int(x^(2))/((1+x^(2))(1+sqrt(1+x^(2))))dx" and "],[f(0)=0." Then "f(1)" is "],[" 1) "log(1+sqrt(2))quad " 2) "log(1+sqrt(2))+(pi)/(4)],[" 3) "log(1+sqrt(2))-(pi)/(4)" 4) "log(sqrt(2)-1)]

Promotional Banner

Similar Questions

Explore conceptually related problems

" If "f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))" and "f(0)=0" Find the value of "f(sqrt(3))-ln(2+sqrt(3))

int_(0)^(1)(log x)/(sqrt(1-x^(2)))dx

If f'(x)=(1)/(-x+sqrt(x^(2)+1)) and f(0)=-(1+sqrt(2))/(2) then f(1) is equal to a) -log(sqrt(2)+1) b)1 c) 1+sqrt(2) d) 1/2log(1+sqrt(2))

int_(0)^(3)(3x+1)/(x^(2)+9)dx=(pi)/(12)+log(2sqrt(2))(b)(pi)/(2)+log(2sqrt(2))quad (c)(pi)/(6)+log(2sqrt(2))(d)(pi)/(3)+log(2sqrt(2))

int(1)/(sqrt((log.(1)/(2))^(2)-x^(2)))dx=

int_(-1)^(1)log(x+sqrt(x^(2)+1))dx=?

int_(-1)^(1)log(x+sqrt(x^(2)+1))dx=?

f(x)=sqrt(log((3x-x^(2))/(x-1)))

f(x)=sqrt(log((3x-x^(2))/(x-1)))