Home
Class 12
MATHS
[1+((dy)/(dx))^(3)]^(3/4)=(d^(2)y)/(dx^(...

[1+((dy)/(dx))^(3)]^(3/4)=(d^(2)y)/(dx^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

The degree of the differential Equation (1+((dy)/(dx))^(2))^(3//4)=((d^(2)y)/(dx^(2)))^(1//3)

The degree of the differential equation [1+((dy)/(dx))^(2)]^((3)/(4))=((d^(2)y)/(dx^(2)))^((1)/(3)) is -

The order and degree of the differential equation [1 + ((dy)/(dx))^(2) + sin((dy)/(dx))]^(3//4)= (d^(2)y)/(dx^(2))

The degree of the differential equation [1+((dy)/(dx))^2]^(3//4)=((d^2y)/(dx^2))^(1//3) is

(d^(2)x)/(dy^(2)) equals: (1)((d^(2)y)/(dx^(2)))^(-1) (2) -((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-3)(3)-((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(-2)(4)-((d^(2)y)/(dx^(2)))^(-1)((dy)/(dx))^(3)

The order and degree of the differential equation y = ([5+((dy)/(dx))^(2)]^(4//3))/((d^(2)y)/(dx^(2))) is

find the order and degree of D.E : (1) ((d^(2)y)/(dx^(2) ))^2 + ((dy)/(dx))^(3) = e^(x) (2) sqrt(1 + 1/((dy)/(dx))^(2))= ((d^(2)y)/(dx^(2)))^(3/2) (3) e^((dy)/(dx))+ (dy)/(dx) =x

STATEMENT -1 : for the function y= f(x), f(x) ,({1+((dy)/dx)^(2)}^(3/2))/((d^(2)y)/(dx^(2))) = - ({1+ (dx/dy)^(2)}^(3/2))/((d^(2)x)/(dy^(2))) STATEMENT -2 : (dy)/(dx) = (1/(dx))/dy and (d^(2)y)/(dx^(2)) = d/dx (dy/(dx))