Home
Class 12
MATHS
[" If "[" If "y=(sin^(2)x)^(2)" then pro...

[" If "[" If "y=(sin^(2)x)^(2)" then prove that "],[(1-x^(2))_(y_(1n+2))-(2n+1)xy_(n+1)-n^(2)y_(n)=0]],[" Guestion "4" : "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(a sin^(-1)x) then show that (1-x^(2))y_(n+2)-(2n+1)xy_(n+1)-(n^(2)+a^(2))y_(n)=0

If 2x=y^(1/m)+y^(-1/m) , then prove that (x^2-1)y_(n+2)+(2n+1)xy_(n+1)+(n^2-m^2)y_n=0 .

If y = (x+ sqrt(1+x^2))^n then prove that (1+x^2)y_2+xy_1 = n^2y .

If y=((1+x)/(1-x))^(n) , prove that (1-x^(2))(d^(2)y)/(dx^(2))=2(n+x)(dy)/(dx).

If y=px^(n)+qx^(-n) , show that x^(2)y_(2)+xy_(1)-n^(2)y=0 .

If 2x= y^((1)/(m)) + y^(-(1)/(m)) (n ge 1) then prove that, (x^(2)-1) y_(2) + xy_(1) = m^(2)y

If y=cos^(-1)((x^(2n)-1)/(x^(2n)+1)))," then "(1+x^(2n))y_(1)=

If cos^(-1)((y)/(b))=log((x)/(n))^(n) , prove that, x^(2)y_(2)+xy_(1)+n^(2)y=0 .

If y=x^(2)e^(x) ,show that y_(n)=(1)/(2)n(n-1)y_(2)-n(n-2)y_(1)+(1)/(2)(n-1)(n-2)}

If Sin^(-1)x+Sin^(-1)y+Sin^(-1)z=pi then prove that n xsqrt(1-x^(2))+ysqrt(1-y^(2))+zsqrt(1-z^(2))=2xy z