Home
Class 12
MATHS
If x=log(1+t^(2)),y=t-tan^(-1)t, find (d...

If `x=log(1+t^(2)),y=t-tan^(-1)t`, find `(dy)/(dx)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=log(1+t^(2)),y=t-tan^(-1)t , show that (dy)/(dx)=sqrt(e^(x)-1)/(2)

If y=log(1+2t^(2)+t^(4)),x=tan^(-1)t," find "(d^(2)y)/(dx^(2)) .

If x=log(1+t^(2)),y=2t-2tan^(-1)t, then at t = 1(d^(2)y)/(dx^(2)) equals-

If x=log(1+t^2) and y=t-tan^-1 t , then dy/dx is

If x=a(t+t^(-1)),y=a(t-t^(-1))," then "(dy)/(dx)=

If y =log (1+ 2t^(2)+t^(4)), x= tan^(-1) t find (d^(2)y)/(dx^(2))

If x=(1+log t)/(t^(2)),y=(3+2log t)/(t), find (dy)/(dx)

If sin x=(2t)/(1+t^(2)),tan y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=tan^(-1)t, and y=t^(3), find (dy)/(dx)

If sin x=(2t)/(1+t^(2)),tan y=(2t)/(1-t^(2)),quad find (dy)/(dx)