Home
Class 12
MATHS
Show that 4 sin A sin Bsin C = sin(A+B...

Show that
`4 sin A sin Bsin C = sin(A+B-C) + sin (B+C-A) + sin(C+A-B)-sin(A+B+C).`

Promotional Banner

Similar Questions

Explore conceptually related problems

a sin A-b sin B=c sin(A-B)

a sin A-b sin B=c sin(A-B)

Show that: sin A sin(B-C)+sin B sin(C-A)+sin C sin(A-B)=0

Show that: sin A + sin B +sin C - sin(A+B+C)=4 sin ((A+B)/2)sin ((B+C)/2)sin ((C+A)/2)

Prove that (sin (A - B))/( sin A sin B ) + ( sin (B -C))/( sin B sin C ) + (sin (C - A))/( sin C sin A) =0

sin (B + CA) + sin (C + AC) + sin (A + BC) = 4sin A sin B sin C

sin (A+B+C)+sin(A-B-C)+sin(A+B-C)+sin(A-B+C)=

19. Prove that sin(A +B) sin(A-B)+sin(B+C)sin(B-C) + sin(C+A) sin(C-A)=0

Prove the following : sin2A+sin2B+sin2C-sin2(A+B+C) 4sin(B+C)sin(C+A)sin(A+B)

show that sin A*sin(B-C)+sin B*sin(C-A)+sin C*sin(A-B)=0