Home
Class 12
MATHS
If alpha and beta are 2 distinct ro...

If ` alpha ` and ` beta ` are 2 distinct roots of equation ` a cos theta + b sin theta = C ` then ` cos( alpha + beta ) = `

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are roots of the equation a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that cos alpha + cos beta = (2ac)/(a^(2)+ b^(2))

If alpha " and " beta are two distinct roots of a cos theta + b sin theta = c , prove that sin (alpha + beta) = (2ab)/(a^(2)+b^(2))

If alpha, beta are the roots of the equation a cos theta + b sin theta = c , then prove that cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2) .

If alpha and beta are roots of the equatioin a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If alpha and beta are roots of the equatioin a cos theta + b sin theta = c , then find the value of tan (alpha + beta).

If alpha and beta are distinct roots of the equation : a tan theta+b sec theta=c , prove that tan (alpha+ beta)= (2ac)/(a^2-c^2) .

If alpha and beta are the two different roots of equations alpha cos theta+b sin theta=c , prove that (a) tan (alpha-beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha and beta are the two different roots of equations alpha cos theta+b sin theta=c , prove that (a) tan (alpha-beta)=(2ab)/(a^(2)-b^(2)) (b) cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha and beta are the solution of the equation a cos2 theta+b sin2 theta=c then cos^(2)alpha+cos^(2)beta is equal to