Home
Class 7
MATHS
lim(x rarr(pi)/(4))(int(2)^(sec^(2)x)f(t...

lim_(x rarr(pi)/(4))(int_(2)^(sec^(2)x)f(t)dt)/(x^(2)-(pi^(2))/(16))" equals "

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr(pi)/(4)) (int_(2)^(sec^(2)x)f(t)dt)/(x^(2-)(pi^(2))/(16)) is equal to

lim_(xrarr(pi)/(4)) (int_(2)^(sec^(2)x)f(t)dt)/(x^(2-)(pi^(2))/(16)) is equal to

lim_(x rarrpi/4)(int_2^(sec^2x) f(t)dt)/(x^2-pi^2/16)

The value of lim _( x to (pi)/(4))(int_(2 ) ^(cosec ^(2)x)tg (t )dt)/(x ^(2)-(pi^(2))/(16)) is:

The value of lim _( x to (pi)/(4))(int_(2 ) ^(cosec ^(2)x)tg (t )dt)/(x ^(2)-(pi^(2))/(16)) is:

The value of lim _( x to (pi)/(4))(int_(2 ) ^(cosec ^(2)x)tg (t )dt)/(x ^(2)-(pi^(2))/(16)) is:

underset(xrarr(pi//4))lim( int_2^(sec^2x)(f(t)dt))/(x^2-(pi)^2/16 equals

lim_(pi//4)(overset(sec^(2)x)underset(2)intf(l)dt)/(x^(2)-(pi^(2))/(16)) equals

Let f: R to R be a continuous function. Then lim_(x to pi//4) (pi/4 int_2^(sec^2x) f(x)dx)/(x^2 - pi^2/16) is equal to :