Home
Class 12
MATHS
" Let "f:R rarr R" be a function defined...

" Let "f:R rarr R" be a function defined by "f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x))" then "-

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:R rarr R be a function defined by f(x)=(e^(|)xl-e^(-x))/(e^(x)+e^(-x)) then- -(1) fis a bijection (2) fis an injection only (3) fis a surjection (4) fis neither injection nor a surjection f(x) elx

Let f:R rarr R be a function defined by f(x)=(e^(|)xl-e^(-x))/(e^(x)+e^(-x)) then- ) fis a bijection (2) fis an injection only (3) fis a surjection (4) fis neither injection nor a surjection f(x) elx

Let f:R rarr R" be defined by "f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)). Then

f: R to R is a function defined by f(x) =(e^(|x|) -e^(-x))/(e^(x) + e^(-x)) . Then f is:

Let f : R->R be a function defined by f(x)=(e^(|x|)-e^(-x))/(e^x+e^(-x)) then --(1) f is bijection (2) f is an injection only (3) f is a surjection (4) f is neither injection nor a surjection

Let f: R->R be a function defined by f(x)=(e^(|x|)-e^(-x))/(e^x+e^(-x)) . Then, f is a bijection (b) f is an injection only (c) f is surjection on only (d) f is neither an injection nor a surjection

The function f:R rarr R defined by f(x)=(e^(|x|)-e^(-x))/(e^(x)+e^(-x)) is

Let f be a real valued function defined by f(x)=(e^(x)-e^(-|x|))/(e^(x)+e^(|x|)), then the range of f(x) is: (a)R(b)[0,1](c)[0,1)(d)[0,(1)/(2))

let f:R rarr R be a continuous function defined by f(x)=(1)/(e^(x)+2e^(-x))

Let f:Rto R be a functino defined by f (x) = e ^(x) -e ^(-x), then f^(-1)(x)=