Home
Class 12
MATHS
Prove that I(1),I(2),I(3)"..." form an A...

Prove that `I_(1),I_(2),I_(3)"..."` form an AP, if
(i) `I_(n)=int_(0)^(pi)(sin2nx)/(sinx)dx`
(ii) `I_(n)=int_(0)^(pi)((sinnx)/(sinx))^(2)dx`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that I_(1),I_(2),I_(3)"..." form an AP, if I_(n)=int_(0)^(pi)(sin2nx)/(sinx)dx .

Prove that I_(1),I_(2),I_(3)"..." form an AP, if I_(n)=int_(0)^(pi)(sin2nx)/(sinx)dx .

Prove that I_(1),I_(2),I_(3)"..." form an AP, if I_(n)=int_(0)^(pi)(sin2nx)/(sinx)dx .

If I_(n)=int_(0)^((pi)/(2))(sin^(2)nx)/(sin^(2)x)dx, then

Let I_(n) = int_(0)^(pi)(sin^(2)(nx))/(sin^(2)x)dx , n in N then

If I_(1)= int_(0)^(3pi) f( sin^(2) x)dx and I_(2)= int_(0)^(pi) f(sin^(2)x)dx then

I_(1)=int_(0)^((pi)/2)Ln (sinx)dx, I_(2)=int_(-pi//4)^(pi//4)Ln(sinx+cosx)dx . Then

I_(1)=int_(0)^((pi)/2)In (sinx)dx, I_(2)=int_(-pi//4)^(pi//4)In(sinx+cosx)dx . Then