Home
Class 11
MATHS
If Pm stands for ^m Pm , then prove that...

If `P_m` stands for `^m P_m` , then prove that: `1+1. P_1+2. P_2+3. P_3++ndotP_n=(n+1)!`

Promotional Banner

Similar Questions

Explore conceptually related problems

If P_(m) stands for mP_(m), then prove that: 1+1.P_(1)+2.P_(2)+3.P_(3)+...+n.P_(n)=(n+1)!

prove that 1P_1+2.2P_2+3.3P_3+.........+n.nP_n=(n+1)P_(n+1)-1

If P_m stands for ""^mP_m , then : 1+1.P_1+2P_2+3P_3+.........+nP_n is equal to ,

Prove that: P(1,1)+2. P(2,2)+3. P(3,3)++ndotP(n , n)=P(n+1,\ n+1)-1.

Prove that: P(1,1)+2.P(2,2)+3.P(3,3)++ndot P(n,n)=P(n+1,n+1)-1

Let P_(m) stand for nP_(m). Then the expression 1.P_(1)+2.P_(2)+3.P_(3)+...+n.P_(n)=: