Home
Class 12
MATHS
If X is the random variable with probabi...

If X is the random variable with probability density function f(x) is given by
`f(x)={{:(x+1, -1 le x lt 0), (-x+1, 0 le x lt 1), (0,"otherwise"):}`
then find (i) the distribution function F(x) (ii) `P(-0.5 le X le 0.5)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If X is the random variable with porbability density function f(x) given by f(x)={(x-1,1lt=xlt2),(-x+3,2lt=xlt3),(0,"otherwise"):} find (i) the distribution function F(x) (ii) P (1.5lt=X lt=2.5)

The probability density function of X is f(x)={{:(x, 0 lt x lt 1), (2-x, 1 le x lt 2), (0, "otherwise"):} Find P(0.5 le X lt 1.5)

The probability density function of X is f(x)={{:(x, 0 lt x lt 1), (2-x, 1 le x lt 2), (0, "otherwise"):} Find P(0.2 le X lt 0.6)

The probability density function of X is f(x)={{:(x, 0 lt x lt 1), (2-x, 1 le x lt 2), (0, "otherwise"):} Find P(1.2 le X lt 1.8)

If X is the random variable with distribution function F(x) given by, F(x)={{:(0, x lt 0), (1/2(x^(2)+x), 0 le x lt 1), (1, x le 1):} then find (i) the probability density function f(x) (ii) P(0.3 le X le 0.6)

The probability density function of X is given by f(x)={{:(ke^(-x/3), "for " x gt 0), (0, "for " x le 0):} Find P(5 le X)

A continuous random varibale X has probability density function f(x)=kx^(2) 0 le x lt 1 find k P(1 lt x lt 5)

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

The probability density function of X is given by f(x)={{:(ke^(-x/3), "for " x gt 0), (0, "for " x le 0):} Find the distribution function