Home
Class 10
MATHS
DeltaABC and DeltaDEF are equilateral tr...

`DeltaABC and DeltaDEF` are equilateral triangles. If `A(DeltaABC) :A(DeltaDEF)=1:2` and AB=4 , then what is the length of DE ?

Promotional Banner

Similar Questions

Explore conceptually related problems

DeltaABC and DeltaDEF are equilateral triangles. If A(DeltaABC):A(DeltaDEF)=1:2 and AB=4 , find DE.

DeltaABC and DeltaDEF are equilateral triangles, A(DeltaABC) : A(DeltaDEF)= 1 :2 . If AB=4 then what is the length of DE ?

DeltaABC and DeltaDEF are equilateral triangles, A(DeltaABC) : A(DeltaDEF)= 1 :2 . If AB=4 then what is the length of DE ?

DeltaABCandDeltaDEF both are equilateral triangles. A(DeltaABC):A(DeltaDEF)=1:2. . If AB = 4 , then what is the length of DE ?

DeltaABC and DeltaDEF are equilateral triangles, A(DeltaABC):A(DeltaDEF)=1:2 If AB=4 then what is length of DE?

If DeltaABC ~ DeltaDEF such that A(DeltaABC) = 4A(DeltaDEF) and AC = 6 cm, then DF =

If DeltaABC ~ DeltaDEF such that A(DeltaABC) = 4A(DeltaDEF) and AC = 6 cm, then DF =

DeltaABC~DEF . A(DeltaABC) : A(DeltaDEF)=49 : 100 . Find the ratio of AB : DE .

DeltaABC" and "DeltaDEF are two equilateral triangles of sides 4 cm and 2 cm respectively. Find the ratio of ar(ABC) and ar(DEF).