Home
Class 12
MATHS
If x=rcos thetacosphi,y=rcosthetasinphi ...

If `x=rcos thetacosphi,y=rcosthetasinphi and z=r sin theta,` show that ,`x^2+y^2+z^2=r^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=r cos theta cos phi , y=r cos theta sin phi and z=r sin theta , then x^(2)+y^(2)+z^(2)=

If x=r cos theta cos phi, y=r cos theta sin phi, z=r sin theta , then prove that x^(2)+y^(2)+z^(2)=r^(2).

If x=r sin theta cos phi, y= r sin theta sin phi, z=r cos theta , prove that x^2+y^2+z^2=r^2 .

If x = r cos theta cos phi, y = r cos theta sin phiz = r sin theta, then x ^ (2) + y ^ (2) + z ^ (2) = (i) r ^ (2) (ii ) y ^ (2) (iii) x ^ (2) (iv) z ^ (2)

If x=asec thetacosphi,y=bsec thetasin phi and z=ctantheta, show that, (x^2)/(a^2)+(y^2)/(b^2)-(z^2)/(c^2)=1

If x = rsin theta*cos phi , y = rsin theta*sin phi and z = rcos theta then prove that x^2 + y^2 + z^2 = r^2

If x=r sin theta cos varphi,y=r sin theta sin varphi and z=r cos theta, then x^(2)+y^(2)+z^(2)=r^(2)(b)x^(2)+y^(2)-z^(2)=r^(2)(c)x^(2)-y^(2)+z^(2)=r^(2)(d)z^(2)+y^(2)-x^(2)=r^(2)

If x=rsinthetacosphi,y=rsinthetasinphi and z=rcostheta, then x^2+y^2+z^2 is independent of (a)theta,phi (b) r ,theta (c) r ,phi (d) r

If x=rsinthetacosphi,y=rsinthetasinphi and z=rcostheta, then x^2+y^2+z^2 is independent of (a)theta,phi (b) r ,theta (c) r ,phi (d) r

If x = r cos theta and y =r sin theta , then proof x^2 + y^2 = r^2