Home
Class 10
MATHS
If (1)/((a^(2)-bx)(b^(2)-ax))=(A)/(a^(2)...

If `(1)/((a^(2)-bx)(b^(2)-ax))=(A)/(a^(2)-bx)+(B)/(b^(2)-bx)`, then the value of `A` and `B` respectively would be _________.

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2x^(3)-5x^(2)+x+2=(x-2)(ax^(2)-bx-1), then a & b are respectively :

If 2x^(3)-5x^(2)+x+2=(x-2)(ax^(2)-bx-1), then a & b are respectively :

If (x+1) and (x-2) are factors of x^(3)+ax^(2)-bx-6, then find the values of a and b respectively.

If int e^(ax) sin bx dx=(e^(ax))/(sqrt(a^(2)+b^(2)))sin(bx+m)+c , then the value of m is-

If 2x^3-5x^2+x+2=(x-2)(ax^2-bx-1) then a and b are respectively.

If ax^(2)-bx=ay^(2)+by , then (a)/(b)=

If ax^(2)+bx+4 attains its minimum value -1 at x = 1, then the values of a and b are respectively

If ax+by=6,bx-ay=2 and x^(2)+y^(2)=4, then the value of (a^(2)+b^(2)) would be:

If x + 3 is a factor of x^(3) + ax^(2) - bx + 6 and a + b = 7. Then, the values of a and b are respectively

If (x-alpha) is the H.C.F of x^(2)+ax+b and x^(2)+bx+a, then find the value of and a+b+1