Home
Class 12
MATHS
If a, b, c be respectively the sums of p...

If a, b, c be respectively the sums of p, q, r terms of an A.P., show that,
`(a)/(p)(q-r) + (b)/(q)(r-p) +(c )/(r )(p-q) = 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are respectively the sums of p,q,r terms of an A.P., prove that a/p(q-r)+b/q(r-p)+c/r(p-q)=0

If a,b,c be respectively the sum of first p,q,r terms of an A.P. then a/p(q-r) + b/q(r-p) + c/r(p-q) equals :

The sum of the first p,q,r terms of an A.P.are a,b,c respectively.Show that (a)/(p)(q-r)+(b)/(q)(r-p)+(c)/(r)(p-q)=0

If a , b and c b respectively the pth , qth and rth terms of an A.P. prove that a(q-r) +b(r-p) +c (p-q) =0

The sums of first p, q, r terms of an A.P. are a, b, c respectively. Prove that (a)/(p) (q-r) +(b)/(q) (r-p) +(c )/(r) (p-q) =0

The sum of the first p,q, rterms of an A.P are a,b, crespectively.Show that (a)/(p)[q-r]+(b)/(q)[r-p]+(c)/(r)[p-q]=0

Sum of the first p,q and r terms of an A.P. are a, b and c, respectively. Prove that, (a)/(p) (q-r) + (b)/(q) (r-p) + (c )/(r ) (p-q) = 0

If a,b,c are respectively the p^(th),q^(th),r^(th) terms of an A.P.,then prove that a(q-r)+b(r-p)+c(p-q)=0

If a , b ,and c are respectively, the pth, qth , and rth terms of a G.P., show that (q-r)loga+(r-p)logb+(p-q)logc=0.