Home
Class 11
MATHS
If tan^(2)alpha tan^(2)beta+tan^(2)beta ...

If `tan^(2)alpha tan^(2)beta+tan^(2)beta tan^(2)gamma+tan^(2)gamma tan^(2)alpha+2tan^(2)alpha tan^(2)beta tan^(2)gamma= 1`.(where `alpha,beta,gamma` in `R-{(n pi)/(2)},n in I`) Value of `cos2alpha+cos2 beta+cos2gamma` is equal to -

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan ^ (2) alpha tan ^ (2) beta + tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) gamma tan ^ (2) alpha + 2tan ^ (2) alpha tan ^ (2 ) beta tan ^ (2) gamma = 1 then sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma =

If 2tan^(2)alpha tan^(2)beta tan^(2)gamma+tan^(2)alpha tan^(2)beta+tan^(2)beta tan^(2)gamma+tan^(2)gamma tan^(2)alpha=1 prove that sin^(2)alpha+sin^(2)beta+sin^(2)gamma=1

2tan ^ (2) alpha tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) alpha tan ^ (2) beta + tan ^ (2) beta tan ^ (2) gamma + tan ^ (2) gamma tan ^ (2) alpha find the value of sin ^ (2) alpha + sin ^ (2) beta + sin ^ (2) gamma

tan^(If)alpha+2tan alpha*tan2 beta=tan^(2)beta+2tan beta*tan2 alpha

(cos^(2)alpha-cos^(2)beta)/(cos^(2)alpha*cos^(2)beta)=tan^(2)beta-tan^(2)alpha

Prove that: tan(alpha-beta)+tan(beta-gamma)+tan (gamma-alpha) = tan(alpha-beta) tan (beta-gamma) tan (gamma-alpha) .

tan ^ (2) alpha-tan ^ (2) beta = (sin ^ (2) alpha-sin ^ (2) beta) / (cos ^ (2) alpha cos ^ (2) beta)

If tan^(2)alpha=2tan^(2)beta+1 , evaluate : cos 2alpha+sin^(2)beta.