Home
Class 10
MATHS
If the roots of (x-a)(x-b)+(x-b)(x-c)+(x...

If the roots of `(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0` are equal then show that `a=b=c`

Promotional Banner

Similar Questions

Explore conceptually related problems

The roots of (x-b)(x-c) +(x-a)(x-c) +(x-a) (x-b)=0 are

If the roots of the equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are equal, then a^(2)+b^(2)+c^(2) is equal to

both roots of the equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are

both roots of the equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are

If the roots of the equation (x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0 are equal then

If the roots of the equation (x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0 are equal then

Show that the roots of (x-b)(x-c)+(x-c)(x-a)+(x-a)(x-b)=0 are real, and that they cannot be equal unless a=b=c.

If the roots of (a-b)x^(2)+(b-c)x+(c-a)=0 are real and equal, then prove that b, a, c are in arithmetic progression.

If a,b and c are real numbers then the roots of the equation (x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)=0 are always