Home
Class 12
MATHS
Show that (666 ...n "times")^(2)+(888......

Show that `(666 ...n "times")^(2)`+(888.... N times) =(444.... 2n times).

Promotional Banner

Similar Questions

Explore conceptually related problems

(666...n times)^2 +(888..n times) is equal to ___

(666 …. N digits)^(2) + (888 …. N digits ) =

Prove that (666 …. "to n digits")^(2) + (888 …. To n digits ) = (444 … to 2n digits ).

(666…..n "digits")^2 + (888 ... n digits) is equal to

STATEMENT -1: (666...n digit)^2+(888... ndigit)=(444....2ndigits) STATEMENT- 2 (111....1) 12 times is a prime number. (A) STATEMENT-1 is True, STATEMENT-2 is True ; STATEMENT-2 is a correct explanation for (B) STATEMENT-1 is True, STATEMENT-2 is True; STATEMENT-2 is NOT a correct explanation for (C) STATEMENT-1 is True, STATEMENT-2 s False .n digits+ (888. digits) (44 .2n digits) 2 is a prime number 12 times n H.P., wherea STATEMENT-1 STATEMENT-1 STATEMENT-1 is False, STATEMENT-2 is True (D)

Evaluate : ( m^(-3) times n^4 ) /( n^2 times m^-8 ) ( m! = 0 , n != 0 )

Show that (1 xx 2^(2) + 2 xx 3^(2) + . . . + n xx ( n + 1) ^(2))/( 1 ^(2) xx 2 + 2^(2) xx 3 + . . . + n^(2) xx ( n + 1) ) = ( 3 n + 5)/( 3 n + 1 )

underset("n-digits")((666 . . . .6)^(2))+underset("n-digits")((888 . . . .8)) is equal to

underset("n-digits")((666 . . . .6)^(2))+underset("n-digits")((888 . . . .8)) is equal to