Home
Class 12
PHYSICS
Calculate the amount of energy released ...

Calculate the amount of energy released during the `alpha`-decay of
`._(92)^(238)Urarr_(90)^(234)Th+._(2)^(4)He`
Given: atomic mass of `._(92)^(238)U=238.05079 u`, atomic mass of `._(90)^(234)Th=234.04363 u`,
atomic mass `._(2)^(4)He=4.00260u , 1u=931.5 MeV//c^(2)`. Is this decay spontaneous?Give reason.

Text Solution

Verified by Experts

Given nuclear reaction is `._(92)^(238)U rarr ._(90)^(234)Th + ._(2)^(4)He+Q`
Mass defect `=M_(U)-M_(Th)-M_(He)`
`=238.05079-234.043636-4.002600=0.00456 u`.
Energy released `=(0.00456 u) xx (431.5 MeV//C^(2))=4.25 MeV`.
Promotional Banner

Topper's Solved these Questions

  • XII BOARDS

    XII BOARDS PREVIOUS YEAR|Exercise SET I|70 Videos
  • XII BOARDS

    XII BOARDS PREVIOUS YEAR|Exercise SET II|9 Videos
  • SAMPLE PAPER 2019

    XII BOARDS PREVIOUS YEAR|Exercise SECTION D|6 Videos

Similar Questions

Explore conceptually related problems

Find energy released in the alpha decay, Given _92^238Urarr_90^234Th+_2^4He M( _92^238U)=238.050784u M( _90^234Th)=234.043593u M( _2^4He)=4.002602u

Alpha decay of ._(92)^(238)U forms ._(90)^(234)Th . What kind of decay from ._(90)^(234)Th produces ._(84)^(234)Ac ?

Calculate the energy released in fusion reaction : 4._(1)^(1)Hto._(2)^(4)He+2._(+1)^(0)e Given : mass of ._(1)^(1)H=1.007825u , mass of ._(2)^(4)He=4.00260 u and 1u=931.5 MeV Neglect the mass of positron (._(+1)^(0)e) .

The radioactive decay of uranium into thorium is represented by the equation: ._(92)^(238)Urarr._(90)^(234)Th+x What is x ?

We are given the following atomic masses: ._(92)^(238)U=238.05079u ._(2)^(4)He=4.00260u ._(90)^(234)Th=234.04363u ._(1)^(1)H=1.00783u ._(91)^(237)Pa=237.05121u Here the symbol Pa is for the element protactinium (Z=91)

From the following nuclei select the isotopes and isobars : ""_(92)^(238)U, ""_(90)^(234)Th, ""_(92)^(234)U, ""_(91)^(234)Pa .