Home
Class 12
MATHS
Prove that the shortest distance between...

Prove that the shortest distance between two lines AB and CD is `(|(vecc-veca).(vecb-veca)xx(vecd-vecc)|)/(|(vecb-veca)xxvec(d-vecc)|)` where `veca,vecb,vecc,vecd` are the position vectors of points A,B,C,D respectively.

Promotional Banner

Similar Questions

Explore conceptually related problems

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

If |{:(veca,vecb,vecc),(veca.veca,veca.vecb,veca.vecc),(veca.vecc,vecb.vecc,veca.vecc)| where veca, vecb,vecc are coplanar then:

Show that: (veca-vecd)xx(vecb-vecc)+(vecb-vecd)xx(vecc-veca)+(vecc-vecd)xx(veca-vecb) is independent of vecd .

Show that: (veca-vecd)xx(vecb-vecc)+(vecb-vecd)xx(vecc-veca)+(vecc-vecd)xx(veca-vecb) is independent of vecd .

Show that (veca xx vecb) *(vecc xx vecd) +(vecb xx vecc) *(veca xx vecd) +(vecc xx veca) *(vecb xx vecd)=0 .

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

Prove that: [(vecaxxvecb)xx(vecaxxvecc)].vecd=[veca vecb vecc](veca.vecd)

for any four vectors veca,vecb, vecc and vecd prove that vecd. (vecaxx(vecbxx(veccxxvecd)))=(vecb.vecd)[veca vecc vecd]

for any four vectors veca,vecb, vecc and vecd prove that vecd. (vecaxx(vecbxx(veccxxvecd)))=(vecb.vecd)[veca vecc vecd]

for any four vectors veca,vecb, vecc and vecd prove that vecd. (vecaxx(vecbxx(veccxxvecd)))=(vecb.vecd)[veca vecc vecd]