Home
Class 12
MATHS
In triangle ABC, if cosA+sinA-(2)/(cosB+...

In `triangle ABC`, if `cosA+sinA-(2)/(cosB+sinB)=0` then prove that triangle is isosceles right angled.

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC, if cosA cos B + sin A sin B sinC =1 then prove that the triangle in an isosceles right angled.

In a A B C , if cosC=(sinA)/(2sinB) , prove that the triangle is isosceles.

If a cosA=b cos B , then prove that either the triangle is isosceles or right triangle.

In a DeltaABC " if " a cosA=bcosB the prove that triangle is either isosceles or right angled .

If cosB = (sinA)/(2sinC) prove that the triangle is isosceles.

If 2cosA=sinB/sinC then show that the triangle is an isosceles triangle

In any triangle ABC : If (cosA)/a= (cosB)/b , prove that the triangle is isosceles.

If a cosA=b cos B then prove that Delta ABC is either isosceles or right angled.

If in triangle ABC cosA+cosB+cosC=3/2 then prove that triangle is equilateral

In any triangle ABC, if (cosB+ 2 cosA)/(cos B + 2cosC ) = (sin C)/(sinA) then prove that, the triangle is either isosceles or right angled.