Home
Class 11
PHYSICS
The position of a particle is given by v...

The position of a particle is given by `vec r = hat i + 2hat j - hat k` and its momentum is `vec p = 3 hat i + 4 hat j - 2 hat k`. The angular momentum is perpendicular to

Promotional Banner

Similar Questions

Explore conceptually related problems

vecF = a hat i + 3hat j+ 6 hat k and vec r = 2hat i-6hat j -12 hat k . The value of a for which the angular momentum is conserved is

vecF = a hat i + 3hat j+ 6 hat k and vec r = 2hat i-6hat j -12 hat k . The value of a for which the angular momentum is conserved is

The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is

The velocity of a particle of mass m is vec(v) = 5 hat(i) + 4 hat(j) + 6 hat(k)" " "when at" " " vec(r) = - 2 hat(i) + 4 hat (j) + 6 hat(k). The angular momentum of the particle about the origin is

The velocity of a particle of mass m is vec(v) = 5 hat(i) + 4 hat(j) + 6 hat(k)" " "when at" " " vec(r) = - 2 hat(i) + 4 hat (j) + 6 hat(k). The angular momentum of the particle about the origin is

If vec a= 2 hat i- hat j+ hat k and vec b = - hat i+3 hat j+4 hat k ,then veca.vecb =

if vec a = 2 hat i - hat j+ hat k, vec b =hat i+ hat j - 2 hat k and vec c =hat i+ 3hat j - hat k , find λ such that vec a is perpendicular to λ vec b+ vec c

Linear momentum vec(P)=2hat(i)+4hat(j)+5hat(k) and position vector is vec(r)=3hat(i)-hat(j)+2hat(k) , the angular momentum is given by

Linear momentum vec(P)=2hat(i)+4hat(j)+5hat(k) and position vector is vec(r)=3hat(i)-hat(j)+2hat(k) , the angular momentum is given by