Home
Class 12
MATHS
If y=("cosec "x+cotx), prove that (sinx)...

If `y=("cosec "x+cotx)`, prove that `(sinx)(d^(2)y)/(dx^(2))-y^(2)=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=cosec x+cot x show that sin x*(d^(2)y)/(dx^(2))=y^(2)

If y=x+cotx then prove that sin^2x(d^2y)/(dx^2)-2y+2x=0 .

If y= cot x, prove that (d^(2)y)/(dx^(2)) + 2y (dy)/(dx)= 0.

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y=e^(x)(sin x+cos x), prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)=2y=0

If y=e^(x)(sin x+cos x) prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)+2y=0

If y=5" cos"x-3" sin"x , prove that (d^(2)y)/(dx^(2))+y=0.

y=5cos x-3sin x prove that (d^(2)y)/(dx^(2))+y=0