Home
Class 11
PHYSICS
Consider the equation d/(dt)(int vec(F)....

Consider the equation `d/(dt)(int vec(F). dvec(S))=A(vec(F).vec(p))` where `vec(F) equiv` force, `vec(s) equiv` displacement, t `equiv` time and `vec(p)`= momentum. The dimensional formila of A will be

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the equation d/(dt)(int vec(F). dvec(S))=A(vec(F).vec(p)) where vec(F) equiv force, vec(s) equiv displacement, t equiv time and vec(p) = momentum. The dimensional formula of A will be

Consider the equation d/(dt)(int vec(F). dvec(S))=A(vec(F).vec(p)) where vec(F) equiv force, vec(s) equiv displacement, t equiv time and vec(p) = momentum. The dimensional formula of A will be

Maxwell’s equation oint vec(E).vec(dl) = (d vec(B).vec(A))/dt is a statement of-

if vec(P) xx vec(R ) = vec(Q) xx vec(R ) , then

vec(r)=2that(i)+3tvec(2)hat(j) . Find vec(v) and vec(a) where vec(v)=(dvec(r))/(dr) , vec(a)=(dvec(v))/(dt)

If vec(p)= vec(a)-vec(b), vec(q)= vec(a) + vec(b), |vec(a)|= |vec(b)|=t " then " |vec(p) xx vec(q)| =

If vec(P) + vec(Q) = vec(R ) and vec(P) - vec(Q) = vec(S) , then R^(2) + S^(2) is equal to

If a force vec(F) = (vec(i) + 2 vec(j)+vec(k)) N acts on a body produces a displacement of vec(S) = (4vec(i)+vec(j)+7 vec(k))m , then the work done is

The position of the particle is given by vec(r )=(vec(i)+2vec(j)-vec(k)) momentum vec(P)= (3vec(i)+4vec(j)-2vec(k)) . The angular momentum is perpendicular to