Home
Class 11
MATHS
साबित करें कि cot^(2)A - tan^(2)A = 4 c...

साबित करें कि `cot^(2)A - tan^(2)A = 4 cot 2A cosec 2A`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan A + cot A = 2 cosec 2A

Show that tan A+cot A=2 cosec 2A

cosec A -2 cot 2A cos A=

prove that tan A+cot A=2 cosec 2A

cosec A- 2cot 2A cos A=

Prove that tan A + cot A = 2 "cosec 2A" .

sin^(2)A*tan^(2)A+cos^(2)A*cot^(2) A= A) 1 + tan^(2)A + cot^(2) A B) tan^(2)A +cot^(2) A-1 C) 1 + sec^(2)A + tan^(2) A D) 1 + csc^(2)A + cot^(2) A

Prove that : (1 + cot A)^(2) + (1 - cot A)^(2) = 2 cosec^(2) A

The expression cosec^(2)A cot^(2)A-sec^(2)A tan^(2)A-(cot^(2)A-tan^(2)A)(sec^(2)A cosec^(2)A-1) is equal to