Home
Class 12
MATHS
यदि रेखाएँ (x-1)/-3 = (y-2)/(2k) = (z-3)...

यदि रेखाएँ `(x-1)/-3 = (y-2)/(2k) = (z-3)/(2)` और `(x-1)/(3k) = (y-1)/2 = (z-6)/-5` परस्पर लम्ब हो तो k का मान ज्ञात किजीये|

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of k so that (x-1)/(-3) = (y-2)/(2k) = (z-4)/(2) and (x-1)/(3k) = (y-1)/(1) = (z-6)/(-5) may be perpendicular is given by :

The value of so that (x-1)/(-3) = (y-2)/(2k) = (z-4)/(2) and (x-1)/(3k) = (y-1)/(1) = (z-6)/(-5) may be perpendicular is given by :

If the lines (x-1)/-3 = (y-2)/2k = (z-3)/2 and (x-1)/3k = (y-1)/1 = (z-6)/-5 are perpendicular, find the value of k

If the lines (x-1)/-3 = (y-2)/(2k) = (z-3)/2 and (x-1)/(3k) = (y-1)/1 = (z-6)/-5 are perpendicular, then find the value of k.

if the lines (x - 1)/(-3) = ( y - 2)/(2k) = ( z -3)/(2) and (x -1) /(3k) = ( y - 5)/(1) = (z - 6 ) /(-5) are at night angle , then find the value of k .

If the line (x-1)/(-3) = (y-2)/(2k) = (z-3)/( 2) and (x-1)/( 3k) = (y-5)/(1) = (6-z)/(5) are mutually perpendicular, then k is equal to

If the lines (x-1)/(-3) =(y-2)/(2k) =(z-3)/2 and (x-1)/(3k)=(y-1)/1=(z-6)/(-5) are perpendicular , find the value of k .

If the lines (x -1)/(-3) = (x - 2)/(2k) = (z - 3)/(2) and (x - 1)/(3k ) = (y -1)/(1) = (z - 6)/(-5) are perpendicular to each other, then the value of k is ,