Home
Class 12
MATHS
If O (origin) is a point inside the tria...

If O (origin) is a point inside the triangle PQR such that `vec(OP)+k_(1)vec(OQ)+k_(2)vec(OR)=0`, where `k_(1), k_(2)` are constants such that `("Area"(DeltaPQR))/("Area"(DeltaOQR))=4`, then the value of `k_(1)+k_(2)` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

If |k vec a| = 1 then the value of k = ___.

O is the origin , P(2,3,4), Q(1,k,1) are points such that bar(OP) _|_ bar(OQ) then find k.

vec(i)timesvec(j)= (a) vec0 (b) 1 (c) -vec k (d) vec k

vec k.vec k= (A) 0 (B) 1 (C) vec i (D) vec j

Let B_1,C_1 and D_1 are points on AB,AC and AD of the parallelogram ABCD, such that vec(AB_1)=k_1vec(AC,) vec(AC_1)=k_2vec(AC) and vec(AD_1)=k_2 vec(AD,) where k_1,k_2 and k_3 are scalar.

O is the origin, P(2,3,4) and Q(1,k,1) are points such that bar(OP)botbar(OQ). Find k.

A point on the line r=2vec i+3vec j+4vec k+t(vec i+vec j+vec k) is

Find the value of: (vec j xxvec k) * (3vec i + 2vec j-vec k)